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ABSTRACT

Geometric constraint solving has applications in a wide variety of �elds, such as

mechanical engineering, chemical molecular conformation, geometric theorem prov-

ing, and surveying. The problem consists of a given set of geometric elements

and a description of geometric constraints between the elements. The goal is to

�nd all placements of the geometric entities which satisfy the given constraints. In

two-dimensions, several di�erent approaches have been examined and implemented,

while the three-dimensional problem has been much less explored in previous litera-

ture. In light of the diverse applicability of the problem, we have three objectives in

this paper. First, we provide a brief overview of the basic approaches to geometric

constraint solving. Second, we review a speci�c solution to constraint solving for

two-dimensional geometric problems. Finally, we present developing work in extend-

ing the solution technique for the two-dimensional problem to geometric constraint

solving for elements in three-space.

1. Introduction

Geometric constraint solving is a problem with applications in many arenas,
such as mechanical engineering, chemical molecular modeling, and surveying. In
each of these communities the problem has been approached in a variety of ways
and with di�ering levels of success. The problem consists of a given set of geometric
elements and a description of geometric constraints between the elements. The goal
is to �nd all placements of the geometric entities which satisfy the given constraints.
For example, the set of elements might be a set of three lines, with the constraints
that the �rst two lines must be perpendicular and the third must make a speci�ed
angle with the �rst line. This particular problem has in�nitely many solutions, and
an additional constraint such as the length of one segment between the intersections
of two pairs of lines would tie down a particular solution.

A problem is well-constrained if there are a �nite number of solutions to the
problem, while a problemwith an in�nite number of solutions is underconstrained. A
problem is overconstrained if one constraint can be deleted yet the constraint system



still has a �nite number of solutions. In the example of the three lines, if the angle
that the third line must make with the second line were given as another constraint,
the problem would be overconstrained, since that angle is already determined by
the �rst two angle constraints. An overconstrained problem may have a solution
when the additional constraints are consistent with previous constraints, but often
overconstrained problems have no solution.

One application for geometric constraint solving is in the area of Computer
Aided Engineering, particularly in the branch of mechanical engineering design. A
method for designing an object with the computer should be strongly visual in order
to provide an intuitive interface, but must also provide a way to produce a careful,
detailed description. One approach for reaching these two disparate goals is to apply
geometric constraint solving to the problem of geometric data input. Through a
graphical user interface, the user can sketch a rough outline of the object to be
constructed. By adding constraints such as the length of an edge of the object or
the angle between two edges, a precise description of the object is obtained. Such a
system has been designed and implemented with points, lines, and circular arcs in
the plane as allowable geometric entities, and constraints such as an angle between
entities, distance from one entity to another, incidence, and tangency (in the case of
circular arcs)4. The object obtained as the solution to the constraint problem can
then be swept or rotated to obtain a three-dimensional object. Additional features
can be added by sketching on a two-dimensional plane of the resulting object, and
extruding the sketched region, or cutting a slot or hole in that shape through the
object.

As an example of this application, consider Figures 1, 2, and 3, which demon-
strates the design of a control arm. These �gures were generated using the feature-
based modeling system of Chen11, which interfaces with the two-dimensional con-
straint solver of Fudos5 for its geometric input. Figure 1 on the left shows a pro�le
which has been sketched, dimensioned, and solved by the constraint solver. Once
the user is satis�ed with the pro�le, it is extruded, generating the solid on the right
of the �gure. To add another feature to the model, a plane of the current solid
is selected in which to sketch and dimension the new feature. Here, the top face
has been selected as the reference face, and the pro�le of a new feature sketched,
dimensioned, and solved, as shown on the left of Figure 2. This new pro�le is then
extruded, yielding the solid shown on the right of the �gure. Several other features,
are added in similar fashion, and the �nal control arm is displayed in wire frame
and shaded in Figure 3.

A second application area for geometric constraint solving is in geometric
theorem proving. Often the assumptions and conclusions of such theorems can be
expressed in terms of constraints between the geometric elements under considera-
tion. Solving the constraint system entails that the relationships are possible, hence
constitutes a proof of the theorem. An example of this application can be found in
Chapter 7 of Ho�mann7.

Yet another application of geometric constraint solving is in molecular con-
formation in chemistry and biology. This entails positioning atoms, represented by



Figure 1: A two-dimensional constraint problem is solved and extruded to obtain a three-

dimensional object. Not shown are the tangency constraints between the line segments and the

arcs.

Figure 2: A feature is added using the pro�le sketcher and a further extrusion. An additional

constraint not shown in the diagram is that the two arcs on the right are concentric.

Figure 3: Final control arm
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Figure 4: A well-constrained sketch for a generic solver

points in three-space, so that they satisfy certain distance relationships. Clearly,
this involves solving a three-dimensional geometric constraint problem.

As these examples of applications demonstrate, there is a wide variety of
uses for geometric constraint solving in two and three dimensions. In light of the
diverse applicability of the problem, we have three objectives in this paper. First,
we provide a brief overview of the basic approaches to geometric constraint solv-
ing. Second, we review a speci�c solution to constraint solving for two-dimensional
geometric problems. Finally, we present developing work in extending the solu-
tion technique for the two-dimensional problem to geometric constraint solving for
elements in three-space.

2. Basic Approaches to Constraint Solving

Beginning with a set of geometric elements and certain constraints between
the elements, there are two basic strategies for solving the problem. The �rst,
an instance solver, immediately uses the explicit values of the given constraints to
determine the possible geometric con�gurations which satisfy the constraints. The
second, a generic solver, determines whether the given geometric elements can be
placed using the given constraints, independent of the values which are assigned
to the constraints. That is, the constraints have a symbolic rather than numerical
value. The determination of speci�c placement of the geometric elements in a
generic solver takes place only after a decision has been made about whether or not
the problem is generically well-constrained.

As an example of the two di�erent approaches, consider the sketch of Fig-
ure 4. Here the constraints are given symbolically, rather than with actual values.
A generic solver would be able to report that the con�guration is well-constrained,
and would be able to determine a method for constructing the possible con�gu-
rations without needing the actual values of the constraints. An instance solver
requires that the values of the constraints be given before it makes any solution de-
termination. Generic solvers are often more elegant and more e�cient than instance
solvers. They also allow more 
exibility in the choice of the underlying method ap-
plied to determine the actual positions of the geometric elements. However, generic
solvers usually are not able to handle the case of overconstrained but consistent
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Figure 5: A well-constrained sketch may yield fundamentally di�erent solutions.

systems, while most instance solvers can �nd the solution. In the example above,
a generic solver may be able to determine that there is a solution, yet may not be
able to construct it, in the special case that the values of the constraints force the
con�guration to be an (overconstrained) triangle.

An underlying principle fundamental to most constraint solvers is the fact
that the position of the geometric elements can be expressed as (nonlinear) algebraic
equations, with the constraints as parameters in the equations. This means that
a well-constrained pro�le may have an exponential number of distinct solutions,
dependent on the number of geometric elements. For example, Figure 5 shows
three possible solutions of a well-constrained pro�le that di�er in the interpretation
of the function of the arc, the tangency type, and the right angle constraint between
two segments. From the user's perspective, only one solution will be correct.

Constraint solvers select what they consider the intended solution by deduc-
ing certain topological and metric properties from the user's sketch of the pro�le.
The deductions are based on a few heuristic rules that succeed under normal cir-
cumstances with high probability. These rules are appropriate when the user sketch
is, in a technical sense, \close" to the intended solution. This may or may not be
the case, and is often not the case when the dimensional constraints of a pro�le are
changed in value, a common occurrence in redesign.

Surprisingly, most solvers have almost no provisions that would allow the
user to select a di�erent solution if the solver's heuristics fail. Developing e�ective
paradigms for redirecting a solver interactively is an important problem, and is
addressed in papers by Ho�mann and Fudos4;5.

In the following sections, we consider four di�erent methods for constraint
solving, with special emphasis on the graph-based method, the approach we take in
our solver, and which we describe in greater detail in Section 3.

2.1. Numerical Algebraic Computation

Numerical constraint solvers function by �rst translating the constraints into
a system of algebraic equations. This system is then solved using an iterative



technique such as the Newton-Raphson method. Clearly, numerical methods are an
example of instance solvers. A positive feature of this approach is that it is able
to handle overconstrained but consistent problems which other techniques may not
be able to solve, assuming convergence. Moreover, the solvers are very general.
For this reason, many constraint solvers fall back on iterative techniques when the
native method is not su�cient to solve a given con�guration.

However, there are some serious drawbacks with the numerical approach.
First is the problem that of the potentially exponential number of solutions, iterative
methods can produce only a single solution. Also, the solution to which it converges
depends strongly on the initial con�guration. Furthermore, because of the multiple
solutions and the large number of parameters, the constraint solving problem is
often ill-conditioned, making convergence di�cult or impossible.

2.2. Symbolic Algebraic Computation

Once again, the constraints are formulated as a system of algebraic equa-
tions. However, instead of applying numerical techniques to determine a solution,
general symbolic computations are undertaken to �nd the solution to the system of
equations. Methods such as Gr�obner basis3 or Wu-Ritt10 techniques can be applied
to �nd symbolic expressions for the solutions. This approach is an instance solver
if numerical coe�cients are used in the system of equations. However, if the system
can be solved with symbolic coe�cients, a generic solution to the constraint system
is found. The generic solution can be evaluated with speci�c constraint values to
�nd the actual physical con�gurations possible for the given constraint problem.

One potential problem with this method is that certain equations in the ba-
sis may be algebraically dependent on one another when evaluated with speci�c
constraints values. Thus at the generic solver level, the solver may determine that
a solution exists, yet it will not be able to �nd any of the speci�c con�gurations
satisfying the constraints. A further handicap of this method is that solving sym-
bolic systems of equations can be extremely compute-intensive. For this reason,
restrictions are often placed on the types of geometric entities allowed, as well as
the types of constraints between them which may be speci�ed.

2.3. Logical Inference and Term Rewriting

This approach applies general logical reasoning techniques to the geometric
problem of constraint solving. This approach has been taken by Aldefeld1 and
Bruderlin2, among others. As an example of this method, consider the system
described by Bruderlin. Geometric entities are restricted to points, lines, vectors,
and triangles, and the constraints allowed are distances between points, angles
between lines, or two angles of a triangle. These geometries and constraints are
incorporated into a set of predicates for the system. A set of allowable congruence
relationships for the geometries used are established, and then rules of Euclidean
geometry for ruler and compass constructions are applied. These rules are set up
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Figure 6: A set of geometric elements with constraints, and the corresponding constraint graph;

d denotes a distance constraint.

in Prolog, and Prolog rewrite-rules are used to solve the system. The result is a
construction technique for solving the input constraint system. All possible physical
solutions can be found using the Prolog backtracking mechanism.

While this approach has the potential to be a generic solver, as implemented
the system of Bruderlin is an instance solver, since the predicates and rules use the
actual constraint values throughout the deductive process. The major advantage
of this method is that it avoids translation of the system into complex algebraic
equations. The limitations are that only constructive geometries can be handled,
and that the method is not very e�cient for large systems of constraints. These
disadvantages are common among this type of solver, and hence they are not often
applied in commercial constraint solvers.

2.4. Graph-based Construction Sequences

Graph-based algorithms for solving geometric constraint problems have two
phases, the �rst an analysis phase and the second a construction phase. The graph-
based approach begins by �rst constructing a graph representation of the problem.
Each node in the graph represents a single geometric element, so that a line segment
a of length d delimited by two points A and B would have three nodes. An edge
between two geometric entities indicates a constraint between the elements. The
type of constraint is indicated by a label on the edge. This simple example is shown
in Figure 6, where edges which assert incidence are unlabeled in the graph.

Once a constraint graph has been obtained from the given geometric entities
and the constraints, the graph is analyzed to determine whether the problem is well-
constrained. If the graph is well-constrained, this phase also determines a sequence
of steps for solving the problem. The second phase of the graph method takes the
construction sequence determined from the �rst phase and performs the necessary
construction steps to actually place the geometric elements. Since the �rst phase
does not depend on the values of the constraint but only on the number and type of
constraints between the geometric elements, this is a generic method of constraint
solving. The actual values of the constraints only come into play in the second
phase when the construction steps are carried out.

There are a variety of ways to handle the analysis phase of the graph-based
method.12;13 One approach is to look for a sequence of construction steps such that
the next construction step depends only on previously placed elements. Not all



con�gurations can be handled in this way, however. A di�erent approach looks
for collections of geometric elements whose members can be placed with respect to
one another based on constraints between them. These collections are then placed
relative to one another, thus forming new, larger collections of elements, until all
constraints have been processed and the locations of all the elements are known.

The approach to constraint solving which we have implemented in two dimen-
sions, and which we are developing in three dimensions, is a graph-based technique
which uses the recursive analysis phase just sketched. In the next section we provide
more details of our two-dimensional constraint solver, as a basis for our discussion
of the extension of the method to three-dimensional constraint solving.

3. Two-Dimensional Constraint Solving

Our approach to geometric constraint solving is a recursive analysis, graph-
based method. This approach is favored for two reasons. First, it allows determina-
tion of whether the problem is well-constrained or not in quadratic timein the worst
case. Second, it decouples the constraint solving problem into groups of smaller sys-
tems of equations which can be solved independently and then merged, rather than
framing the problem as a single, large algebraic system to be solved.

In this section, we provide more in-depth explanation of the method as im-
plemented for the two-dimensional problem, upon which our extension to the three-
dimensional problem is based, by summarizing recent work of Bouma, Cai, Fudos,
Paige and Ho�mann. Complete details about the two-dimensional constraint solver
and references to further works can be found in.4;5

3.1. Geometric Entities Considered

The geometric elements considered in the two-dimensional constraint solver
are points, lines and circles of �xed radius. A point is represented by two coordinates
(px; py). A line is represented by a signed, unit normal and the distance of the line
from the origin, (nx; ny; d). Equationally, the line can be represented as the set of
points (x; y) satisfying nxx+nyy�d = 0 and n2x+n2y = 1. A circle is represented by
its center (cx; cy) and its radius cr. For simpli�cation purposes, we require that the
radius of a circle be �xed, that is, the radius cannot be varied to satisfy constraints.

The constraints between these geometric entities are incidence of two entities,
distance between two points, distance between a point and a line, distance between
two parallel lines, angle between two lines, tangency between a circle and a line,
and concentricity of circles. However, because the circles are restricted to having
�xed radius, they can be treated as points by transforming the constraints in which
they are involved into distance and incidence constraints of their center points only.
In fact, all constraints can be transformed into distance and angle constraints only,
which greatly simpli�es the placement problem.

Since the problem is reduced to placing points and lines, any geometric el-
ement is �xed (up to �nitely many positions) by knowing its relationship to two
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Figure 7: A well-constrained sketch and its constraint graph

other previously �xed objects. This fact plays an important role in the analysis
phase of the algorithm, which we describe in the next section.

3.2. Initial Cluster Formation

The �rst phase of the graph-based method for constraint solving involves
analysis of the constraint graph. This analysis determines if the problem is gener-
ically well-constrained or not, and it determines a sequence of steps for placing
the geometric elements if the problem is well-constrained. The basic idea, as de-
scribed above, is to build up collections, or clusters of geometric elements which
can be placed relative to one another, and then to merge these clusters into larger
collections using rigid body transformations.

Cluster formation begins by selecting any two nodes of the graph which are
connected by a constraint edge. These two entities can be placed in some generic
position, depending on the type of geometries and the type of constraint between
them. These two entities are then considered known. The cluster is then made as
large as possible by adding to the cluster any node which is connected by a constraint
edge to exactly two nodes already in the cluster. There must be at least two known
nodes to which the unknown node is related because each of the geometric elements
has two degrees of freedom. There cannot be more than two, because otherwise the
problem is overconstrained.

When no more nodes in the graph can be added to the cluster, the cluster
is considered complete. All constraint edges used in forming the cluster are deleted
from original graph, and a search for a new cluster is carried out in the subgraph.
This process continues until there are no more constraints from which to make any
clusters.

For example, consider the sketch on the left in Figure 7. Its constraint graph
is shown on the right of the �gure, where incidence is shown by unlabeled edges.
If we start the �rst cluster with p1 and l1, we can add p2 to the cluster, and then
can go no further, since no other node in the graph is connected to two nodes of
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Figure 8: The constraint graph forms three clusters.

the cluster. We delete the three constraint edges used to form this cluster, and look
for a new cluster, perhaps beginning this time with p2 and l2. To this new cluster
we can add p3, and subsequently l3, since it is connected to l2 and p3. This cluster
is now complete. We begin our third cluster with p4 and l3, and add l4, p5, and
p1, in that order. All constraint edges have now been used, so cluster formation is
complete. The constraint graph is shown again in Figure 8, with the three clusters
indicated.

Note that clusters may have nodes in common; in fact, that property is
essential for the next step of the analysis phase. In order for the problem to be
well-constrained, the clusters must be able to be merged together in some way so
that a single structure results. Geometrically, this amounts to using rigid body
transformations to bring the clusters into correct relationship with respect to one
another.

Three clusters, each of which share exactly one node with each of the other
two clusters, can be brought into alignment with one another using the shared
elements. In our example, the points p1 and p2 and the line l3 are shared in this
way between the clusters. We can compute the distance from p1 to l3 within cluster
V and the distance from p2 to l3 within cluster W . The distance between p1 and
p2 is already known, so these three elements can be placed relative to one another,
thus merging the three clusters into one larger cluster. If other clusters have two
elements in common with the new cluster, they can be merged into it as well. When
the merged cluster can be grown no longer, the clusters are searched for another set
of three clusters which can be merged.

This process continues until all the clusters have been merged into a single
cluster, or until no more clusters can be merged. If there is a single cluster at the
end of the merging stage, the problem is well-constrained. In that case, the steps
for constructing the con�guration are detailed by the order of the cluster formation.



If multiple clusters are obtained, then the algorithm cannot solve the con-
straint problem. In that case, the problem may be well-constrained but requires
coonstruction steps the algorithm cannot perform, or the problem is not well-
constrained. A complete theoretical characterization of generically well-constrained
point sets with distance constraints exists.14 It leads to a nondeterministic algo-
rithm, and no variant is known that achieves e�cient running times. Consequently,
e�cient constraint solving algorithms require restricting the class of constraint prob-
lems.

An important point about the cluster formation process is that it is not
unique. Any two nodes with a constraint between them can be chosen to begin a
cluster, and if more than one node could be added to a cluster at a given step, any
of them can be selected and added. However, for a well-constrained problem, it has
been shown that no matter what clusters are formed, the �nal geometric solutions
determined by the order of construction from the clusters are congruent6.

The cluster formation phase of the solution does not do any actual placement
of geometric elements. Rather, its function is to analyze the structure of the rela-
tionships between the geometric elements based on the constraints between them.
The placement of the elements itself is done in the second phase of the solution. In
the next section, we describe geometrically how to �nd the position of an unknown
geometric element, given its relationship to two known elements.

3.3. Basic Construction Steps

The placement of one geometric element relative to two others is accom-
plished by solving small systems of algebraic equations. Because of the restriction
on geometries and constraints, these equations have degree at most two. We use
the following notation throughout the discussion. The Euclidean distance norm of

a vector v = (vx; vy) is denoted k v k=
q
v2x + v2y . Let p1 and p2 be two points and

l1(n1; r1) and l2(n2; r2) be two lines, where ni is the unit normal of li, and ri is the
signed distance from li to the origin. We then can write algebraic equations for the
geometric constraints between two entities in the following manner:

� The distance between the two points p1 and p2 is d12:

k p1 � p2 k= d12

� The signed distance between the point p1 and the line l2 is d12:

p1 � n2 = r2 + d12

� The signed angle between the two lines l1 and l2 is �12:

n2 = (nx cos�12 � ny sin�12; ny cos�12 + nx sin�12)

where n1 = (nx; ny)



The sign of the distance and angle measures are determined from the way in
which the user inputs the data. For example, a line segment has an orientation in
the direction from the �rst end point to the second. When a point is input and a
distance to the line segment assigned as a constraint, the sign is determined from
the side of the line on which the point is initially placed by the user. Again for
angle constraints, the orientations of the two line segments are used to determine
which region between the segments should be a�ected by the constraint. Having
this algebraic understanding of the geometry of the constraints allows us to evaluate
the following cases:

Case 1 : (p1; p2)) p3
The point p3 is to be constructed from two given points p1 and p2, where pi

has distance di3 from p3. The coordinates of point p3 must satisfy two quadratic
equations arising from the two distance constraints. Geometrically this corresponds
to intersecting two circles, one centered at p1 of radius d13, the other centered at
p2 with radius d23, as shown in Figure 9. The circles either intersect transversally,
resulting in two solutions, tangentially, resulting in one solution, or not at all,
resulting in no real solutions. In the �gure, a situation with two solutions is shown,
with both possible solutions labeled p3. Notice that we can assume point p1 is at
the origin and that p2 lies on the positive x-axis a distance d12 from p1, since any
other valid con�guration could be obtained as a rigid motion of this con�guration.

Case 2 : (p1; l2)) p3
The point p3 is to be constructed from the given point p1 and the given line

l2, where p3 has distance d13 from p1 and signed distance d23 from l2. Without loss
of generality, assume that l2 coincides with the x-axis and that p1 lies distance d12
from the origin along the positive y-axis, as shown in Figure 10. Then the point p3
must lie on a circle centered at p1 of radius d13 and must lie on a line parallel to l2
and distance d23 away from l2. Since the distance between p3 and l2 is signed, there
is exactly one line satisfying these conditions. The intersection of the circle and the
line provide the possible locations for p3. As before, there can be two, one, or no
solutions depending on the type of intersection. Algebraically, the coordinates of p3
can be found by solving a pair of equations, one of which is linear and one of which
is quadratic.

Case 3 : (l1; l2)) p3
The point p3 is to be constructed from the given lines l1 and l2, where p3 has

signed distance di3 from li. Assume that l1 coincides with the x-axis and that the
angle between l1 and l2 is �12, as shown in Figure 11. Since the distances between p3
and the lines are signed, p3 must be the intersection of two lines, one o�set parallel
to l1 by d13 and the other o�set parallel to l2 by d23. If we ignore the case of parallel
lines, there is exactly one solution in this case. Algebraically, this is equivalent to
solving a pair of linear equations in the coordinates of p3.

Case 4 : (p1; p2)) l3
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Figure 12: A graph transformation in this case would limit the solutions to the problem.

Case 5 : (p1; l2)) l3
These two cases are identical to cases 2 and 3, respectively, since pairwise

constraints exist between all three entities. We can therefore easily transform these
cases to the previous cases by changing the roles of the geometric entities from �xed
to un�xed, and vice versa, as necessary.

Case 6 : (l1; l2)) l3
In this case, the angle between each pair of lines must be given as con-

straints. Since the three lines must de�ne a triangle, the three angles will be either
consistent, and determine an in�nite family of triangles, or redundant, and have no
solutions. We consider this case to be overconstrained because the constraints are
not independent.

3.4. Graph Transformations

What we have presented above are the basic elements of a two-dimensional
constraint solver. There are many extensions possible, some of which we have al-
ready considered, and others which remain to be explored. One extension which has
proved useful is graph transformations which may increase the constraint informa-
tion available, thus allowing alternative clusters, possibly with easier constructions.
For example, if two angle constraints � and � are given between three lines, a third
angle constraint of 180����� can be imposed between the pair of lines not involved
together in the �rst two constraints.

Graph transformations must be applied judiciously, however, as some trans-
formations may limit the generality of the solution. Consider the example from5

shown in Figure 12. If the incidences shown are required, and in addition point A is
constrained to lie on line a, and point C on line c, the constraint graph is as shown
on the right in the �gure. This implies that either a and c are coincident, or A
and C are. However, adding either of these incidence relationships to the constraint
graph would eliminate the other possibility, and therewith some of the solutions to
the original problem.

4. Three-Dimensional Constraint Solving

Our basic approach to constraint solving in three-dimensional space is analo-
gous to that of constraint solving in two-dimensional space. We begin by construct-



ing a graph which speci�es the entire constraint system, with the nodes representing
the geometric elements and an edge between two nodes describing a constraint be-
tween the two geometric entities. Based on the information encoded in the graph,
the geometric elements are grouped into clusters which are placements of a subset
of the elements relative to one another. As we shall see below, forming a cluster
in the three-dimensional case requires as a starting con�guration three geometric
entities which are mutually constrained. Thus it is possible that not all constraints
and geometric elements are used in the cluster formation stage. These remaining
nodes and edges form degenerate clusters. The clusters and degenerate clusters are
then combined using a recursive technique, resulting in a valid placement for all the
geometric elements. As before, there are in general multiple solutions to a given
well-constrained problem.

4.1. Geometric Entities Considered

In two-dimensional constraint solving, the geometric entities which were con-
sidered were points, lines, and circles of �xed radius. All three of these types of
elements need two constraints to be completely �xed. This property is fundamen-
tal to the cluster formation and combination method used in the two-dimensional
case. The obvious generalization of geometric entities for three-dimensional con-
straint solving would be points, lines, planes, and spheres. Note, however, that
points, planes, and spheres of �xed radius all require exactly three constraints to
be placed, while lines require four constraints. In order to keep the construction
of clusters as simple as possible, we do not consider lines at this time, and we fur-
ther simplify matters by eliminating spheres from our current consideration. Thus
the geometric entities which are allowed are points and planes. A point is repre-
sented by its Cartesian coordinates, p : (px; py; pz). A plane P is represented by
the direction cosines of the unit normal and the signed distance from the origin,
P : (nx; ny; nz; d), where n2x + n2y + n2z = 1. The constraints allowed are distance
between two points, distance between a point and a plane, and angle between two
planes. Note that �xed-radius spheres can be used nevertheless as geometric prim-
itives because constraints on them can be translated into equivalent constraints on
their centers.

4.2. Initial Cluster Formation

The �rst step of the construction is to form clusters of geometric elements
which are placed with respect to one another. Because each geometric element has
three degrees of freedom, placing a new element requires that it be constrained by
three known elements. Thus to begin a cluster, a set of three pairwise constrained
nodes is necessary. These three geometric elements are placed into a standard
position and the resulting con�guration is �xed up to a rigid motion in space.
Subsequently, a node is added to the cluster if it is incident to three nodes already
in the cluster.
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Figure 13: A three-dimensional �gure and its constraint graph.

When there are no further nodes to be added to the cluster, the edges belong-
ing to the cluster, i.e. the constraints between nodes in the cluster, are deleted from
the original graph. Cluster formation is then applied recursively to this subgraph.
That is, the subgraph is searched for three nodes which are pairwise constrained
to start a new cluster, the cluster is grown as far as possible, and then the edges
of the cluster are deleted from the subgraph, resulting in a smaller subgraph. This
process of forming a cluster and subsequently deleting the cluster's edges from the
remaining constraint graph is carried out as long as possible. Because the origina-
tion of a cluster requires three pairwise constrained elements, there may eventually
be unused constraints in the remaining subgraph, yet no new cluster can be started.
When this point is reached, any remaining constraint and its two incident nodes
forms a degenerate cluster.

For example, consider the problem of placing the six vertices of the three-
dimensional object shown on the left in Figure 13, if the lengths of the edges between
the vertices are the constraints. We begin the �rst cluster using nodes r, s, and t.
No other node of the graph is incident to three elements of this cluster, so cluster 1
is completed. Its edges are labeled 1 in the constraint graph shown on the right in
Figure 13, and displayed in dotted line. We then form a second cluster with nodes
u, v, and w. Again, this is a complete cluster, labeled 2 in the �gure. Now none of
the remaining constraints are part of an initial cluster, so they must each produce
a degenerate cluster, labeled 3, 4, and 5 in the �gure, and displayed in dashed line.
Thus cluster formation is completed with two full clusters and three degenerate
clusters.

In order to build these clusters, we need to be able to place a geometric
element from three known elements. In the next section, we present a case-by-case
analysis of how these placements are executed. Then, with clusters formed, the �nal
con�guration will be determined by recursively merging the clusters. The issues and
techniques involved in that process are detailed in Section 4.4.

Throughout this section, points are denoted pi and planes Pi(ni; ri), or Pi for
short, where ni is the unit normal of Pi, and ri is the signed distance from Pi to
the origin. We assume throughout that distances between points are non-zero. The
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Figure 14: Cluster growth entails a tetrahedral structure in the constraint graph.

distance between a point and a plane, however, may be zero, meaning the point lies
on the plane.

4.3. Basic Construction Steps

As discussed in the previous section, the three degrees of freedom of the
points and planes under consideration means that the placement of a new point
or plane can be made relative to three already placed points and planes. The
structure of a region of the constraint graph containing an element which is being
added to a cluster is tetrahedral, for the original three elements must be pairwise
constrained, forming the base of the tetrahedron, and the new element must have
a constraint edge between itself and each of the �rst three nodes, forming the apex
of the tetrahedron. This subgraph structure is shown in Figure 14, where each
geometric element Gi, i = 1; :::; 4 is either a point or a plane. Because of the
symmetry of the tetrahedron, any three elements can be selected as the base, or
known elements, and the remaining apex then is considered to be the unknown
element. This allows 
exibility in choosing the easiest method for placing the next
element and reduces the number of placement problems which must be considered.

This interchangability of known and unknown elements may be possible di-
rectly only in the early stages of forming a cluster. For example, consider the
following construction: The beginning of the cluster is a triangle with elements
(G1; G2; G3), to which the an additional vertex is added to form a tetrahedron
(G1; G2; G3; G4). Three more elements G5, G6, and G7 are added as three tetrahe-
drons whose bases are faces of the original tetrahedron. Then a new element G8

could be added to the cluster by having constraints between G8 and each of G5, G6,
and G7. However, there need be no direct relationship given between elements G5,
G6, and G7, so that a choice of which triple of elements to begin with for adding
G8 is not possible. This problem can be overcome by using the information im-
plicit in the cluster formed so far to determine the relationships between G5, G6,
and G7. For example, if these three elements were points, the pairwise distances
between them could be computed from within the cluster. Subsequently, adding
G8 could be handled by choosing any three elements of the G5, G6, G7, and G8
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as the known elements and placing the remaining element with respect to the cho-
sen three. The tetrahedron constructed then must be brought into line with the
previously constructed component of the cluster via a rigid body transformation.

Just as in the procedure of placement of geometric entities in the two-
dimensional case, the generic positioning of the initial elements depends on the
orientation of the geometric elements determined from the user input. The mea-
surement of a signed distance from a plane is made in the direction of the plane
normal if the sign is positive, and in the opposite direction if it is negative. The
region of measure of an angle is determined by the mutual orientation of the two
planes in the region. By incorporating this orientation information, a generic initial
position is determined from each three element con�guration.

For three points p1, p2, and p3 with pairwise distance constraint dij between
pi and pj, i < j, no choice of generic position is necessary, since only a single generic
position exists. We place p1 at the origin, p2 distance d12 along the positive x-axis,
and p3 at either intersection point of the xy-plane and the spheres centered at p1
and p2 with radii d13 and d23, respectively. This is essentially the point placement
routine for two-dimensions when two points are known, but because we are in <3,
the two solutions of <2 are equivalent up to a rigid body motion.

For two points p1 and p2, and a plane P3 with pairwise distance constraint dij
between entities i and j, i < j, two generic positions exist. The plane can be placed
as the xy-plane and p1 at (0; 0; d13). The second point is then placed at (l; 0; d23),

where l =
q
d212 � (d13 � d23)2. The sign of d23 will determine whether p1 and p2 lie

on the same side of P3 or on opposite sides.
Geometrically, the distance constraint between the plane and the two points

implies that the plane must be tangent to the spheres centered at p1 and p2 with
radii d13 and d23, respectively. The envelope of all such planes consists of two cones.
The normals to the cones are the possible normals to the desired plane. If the points
are input oriented oppositely with respect to the plane, the generic position is given
by a plane tangent to the cone which crosses between the two spheres. If the points
are input oriented the same with respect to the plane, the generic position is given
by a plane tangent to the cone exterior to the two spheres. In Figure 15 a projection
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of the situation is shown, with the two possible locations of the planes relative to
the points highlighted. As before, any other potential solution can be found by a
rigid body motion of the relevant one of these two generic con�gurations.

Again, for one point p1 and two planes P2 and P3, with distance constraints
d12 and d13 between the point and the two planes, respectively, and angle constraint
0 < �23 < 180� between the two planes, two generic position are possible, depending
on the input orientations. Plane P2 can be placed as the xy-plane, and plane P3

positioned so that the intersection of P2 and P3 coincides with the y-axis. Then
if the input orientation of p1 with respect to P2 and P3 coincides with the input
orientation of the angle between P2 and P3, p1 will be placed in the region containing
�23. Otherwise, p1 will be placed in the complementary region. In either case, p1
can be placed at the intersection of the two signed o�set planes, with y = 0. These
con�gurations are shown projected into the xz-plane in Figure 16. The four planes
shown in dashed line are the four possible o�set planes, depending on orientation of
the distance between p1 and the given planes. The two intersections below P2 relate
to other combinations of orientations of the signed distances and angles and can be
obtained by a rigid body motion of one of the shown cases, thus are not considered
generic positions.

Finally, when three planes are given, and the pairwise angles �ij between
them, two generic positions exist. In this case, P1 is placed as the xy-plane and
P2 is placed so that the intersection with P1 is the y-axis. Then P3 can �rst be
placed with respect to P1 so that the angle between P1 and P3 is �13, and so that
the intersection between P1 and P3 is the x-axis. This makes the intersection of the
three planes coincide with the origin. This �rst placement of P3 results in a plane
with normal (0; n32; n33), and the four possible combinations of signs of n32 and n33
yield two distinct positions for P3. The appropriate plane is chosen depending on
the input orientation of the planes. Once selected, P3 can be rotated about the
z-axis until the angle between P2 and P3 is �23.

This derivation of the two generic positions can also be obtained algebraically:
Let the normal of P1 be n1 = (0; 0; 1), and the normal of P2 be n2 = (n21; 0; n23).
These are �xed by the input orientation of P1 and P2. Let the normal of P3 be



Figure 17: Degenerate cases for placing a point relative to three known points.

n3 = (n31; n32; n33). Then n3 must satisfy

n33 = cos�13

n31n21 + n33n23 = cos�23

n231 + n232 + n233 = 1

Since n33 and n31 are completely determined by the �rst two equations, there are
two di�erent values fo n32 from the third equation corresponding to the two di�erent
orientations of P3.

We now assume that three known elements have been put into the single
possible generic position, based on their signed constraints. Based on these generic
positions, we can now proceed to place a fourth element with respect to three known
elements.

Case 1 : (p1; p2; p3)) p4
The point p4 is to be constructed from three given points p1, p2 and p3, where

pk has distance dk4 from p4. The coordinates of point p4 must satisfy three quadratic
equations arising from the distance constraints. Geometrically this corresponds to
intersecting three spheres. The intersection of two spheres is a circle, and is equal
to the intersection of a sphere with a certain plane. If the two spheres have the
equations

(x� u1)2 + (y � v1)2 + (z � w1)2 = d214
(x� u2)2 + (y � v2)2 + (z � w2)2 = d224

then this plane is

2(u2 � u1)x+ 2(v2 � v1)y + 2(w2 �w1)z + U = d224 � d214

where U = u21 + v21 + w2
1 � u22 � v22 � w2

2. Thus, we can intersect two planes and a
sphere instead. There will be two solutions in general.

The degenerate situations in this case are shown in Figure 17. On the left
of the �gure is a projection of the case where the three points are collinear. In this
case two of the spheres determine a circle on which p4 must lie, and the third sphere
is either redundant or inconsistent. Thus this case either is overconstrained or has
no solutions. In the �gure is shown a case where there is no solution.



The other degenerate situation, shown in projection on the right in Figure 17,
occurs when two of the spheres are tangent. In this case again the third sphere is
either redundant or inconsistent. Shown is the case where it is redundant. Note that
both degenerate cases can occur simultaneously as well, that is, the three points are
collinear and two spheres, or possibly all three, are tangent to each other.

Case 2 : (p1; p2; P3)) p4
The point p4 is to be constructed from two given points p1 and p2, and from

the given plane P3, at respective distances dk4 from entity k. The coordinates of
point p4 must satisfy one linear and two quadratic equations which geometrically
corresponds to intersecting two spheres and a plane. Note that the plane is the
locus of points at signed distance d34 from P3. As before we intersect instead two
planes and a sphere, obtaining two solutions in general.

There is only one degenerate case: If the two spheres meet tangentially, then
as in Case 1 above, the problem is either overconstrained with a single solution, or
there is no solution because the constraints are inconsistent.

Case 3 : (p1; P2; P3)) p4
The point p4 is to be constructed from a given point p1, and from two given

planes P2 and P3, at respective distances dk4 from entity k. The coordinates of
point p4 must satisfy one quadratic and two linear equations, corresponding to
intersecting a sphere and two planes. Because the distances between points and
planes are signed, there are two solutions in general. A special case arises if the
sphere meets both planes tangentially, as then there must be only a single solution.

This case is degenerate when the two planes are parallel or coincident. If
P2 and P3 are parallel, then p1 is only constrained to lie on a plane also parallel to
the original two planes. Assuming that the original three entities are consistently
constrained, so that such a plane exists, the distance constraints between p4 and
the original three entities are either redundant or inconsistent. For if the distances
to P2 and P3 are consistent, then they determine a plane on which p4 must lie, and
the intersection of this plane with the sphere centered at p1 of radius d14 determines
an entire circle on which p4 may lie. This occurs because of the redundancy in the
distance constraints between P2 and p4 and between P3 and p4. If P2 and P4 are
coincident, again the constraints between p4 and the three given entities determine
either a circle of points for p4 or no points at all.

Case 4 : (P1; P2; P3)) p4
The point p4 is to be constructed from three given planes P1, P2 and P3,

where Pk has distance dk from p4. The coordinates of point p4 must satisfy three
linear equations corresponding to the intersection of three planes. There will be
one solution in general, because of the orientation of the planes. As in the previous
case, degeneracies occur when two or more of the planes are parallel or coincident.
Unlike before, however, in this case there are no consistent overconstrained solutions
possible.



Case 5 : (p1; p2; p3)) P4

Case 6 : (p1; p2; P3)) P4

Case 7 : (p1; P2; P3)) P4

These three cases can be converted to cases 2, 3, and 4, respectively, by
swapping roles of known vs. unknown between appropriate elements, as discussed
earlier. As pointed out in that discussion, this role swapping may require a rigid
body motion to bring the new elements in line with previously placed elements of
the cluster.

Case 8 : (P1; P2; P3)) P4

This case is always an underdetermined situation. Here, the angles from two
planes determine the direction of the sought plane (two possible solutions). The
third angle constraint is redundant or inconsistent. For consistent constraints, the
plane has an additional degree of freedom that remains undetermined.

4.4. Cluster Merging

Once initial clusters have been formed as described above, clusters which
share geometric elements can be placed relative to one another. The goal in cluster
merging is to combine clusters in such a way as to form a rigid body, unique up
to rotation and translation in space. In the two-dimensional setting, the general
merging rule is to combine any three clusters each of which shares a geometric ele-
ment with the other two. In the three-dimensional case, the necessary relationships
between clusters is considerably more complicated.

A cluster has in general six degrees of freedom, three rotational and three
translational. Exceptions include degenerate clusters such as a plane with an in-
cident point, which has only �ve degrees of freedom, since one degree of freedom
is lost by symmetry. To �x a cluster in space, we must determine how to place
certain elements in the cluster with respect to other known clusters based on ele-
ments shared between the cluster being placed and the known clusters. However,
it is not su�cient to place the cluster based on only one or two elements in the
cluster. Fixing a plane alone in the cluster leaves two translational and one rota-
tional degree of freedom, while �xing a point alone leaves three rotational degrees of
freedom. Furthermore, �xing any combination of two points or planes in a cluster
is also insu�cient to �x the cluster itself. Fixing two distinct points or a point and
a plane leave one rotational degree of freedom, while �xing two planes in general
position leaves one translational degree of freedom. Therefore, three separate geo-
metric entities in the cluster must be placed with respect to other known clusters
in order to �x the cluster itself. In the case of degenerate clusters, the two geomet-
ric elements of the cluster must be shared with another cluster in order to �x the
cluster. Note that degenerate clusters can only be �xed up to symmetry, because
they only contain two elements.



Now, if two clusters A and B share two geometric elements between them,
then the clusters are overconstrained, because the relative position of the shared
elements is determined independently in each cluster. Therefore, the three elements
in the cluster to be �xed must belong to three separate known clusters. For degen-
erate clusters, this entails that the two elements in the cluster are each shared with
a di�erent cluster.

If we restrict our discussion to points and distances between them, visual-
ization of the required combinations of clusters and degenerate clusters needed to
obtain a rigid body is greatly simpli�ed. In this consideration of cluster merging,
we begin with a speci�ed number of full clusters. Our goal is to determine the min-
imum number of additional degenerate clusters needed to make the con�guration
stable, up to rigid motions. We ensure the stability by requiring that the outcome
�gures are polyhedra with triangular faces. We will begin with no full clusters,
and work up to a situation which requires no degenerate clusters. For simplicity of
the discussion, we consider full clusters as three points with mutual distance con-
straints between the points, and degenerate clusters as two points with a distance
constraint between them. This is su�cient since placement of only three elements
of a full cluster is necessary to place the complete cluster.

Case 1 : 0 full clusters
Six degenerate clusters are necessary to �x the geometry of the points and

ful�ll the requirements that the two elements of any one degenerate cluster are
shared with two di�erent clusters. These degenerate clusters share four points be-
tween them, in a tetrahedral formation. Explicitly, the clusters can be given by
(p1; p2), (p2; p3), (p3; p1), (p1; p4), (p2; p4), and (p3; p4). If the constraints between
these points were all given explicitly, this combination of degenerate clusters would
have been formed into a cluster in the earlier phase of cluster formation. However,
since constraints can be added to the constraint graph through graph transforma-
tions, some of these may have been implicit constraints not present in the graph
during initial cluster formation, preventing formation of a full cluster then.

Case 2 : 1 full cluster
Three degenerate clusters are required to �x a single full cluster. Again,

there will be four points involved, and a tetrahedron the result. If the full cluster is
(p1; p2; p3), the degenerate clusters are (p1; p4), (p2; p4), and (p3; p4). As in the pre-
vious case, if the constraints in the degenerate cluster were all given explicitly, then
this combination would not occur since the four points would have been combined
into the same cluster in initial cluster formation.



Case 3 : 2 full clusters
When we consider the case of two full clusters, there are two subcases to be

handled, based on whether the full clusters share an element or not.

Subcase 3.1 : Shared element
If the two clusters share an element, their initial con�guration is as seen on

the left in Figure 18. If two degenerate clusters are added by adding constraints
between pairs of elements in the two clusters, the �gure is still not rigid. A third
degenerate cluster must be added between the two clusters to make the con�guration
immobile. The necessary degenerate clusters are shown in the diagram on the right
of Figure 18. The �rst two additional constraints are shown in dashed line, and the
third in dotted line. The con�guration is a double tetrahedron

Subcase 3.2 : No shared element
If the two clusters do not share an element, then six degenerate clusters are

needed to connect the two cluster. This is the case shown in Figure 13, but with
only three degenerate clusters. However, these three constraints are insu�cient to
�x the points with respect to each other. A constraint running diagonally across
each of the four-sided faces is needed to make the con�guration rigid. For example,
constraints between (t; u), (t; v), and (s; u) would make the con�guration stable.
Structurally, this con�guration is an octahedron.

Case 4 : 3 full clusters
There are a variety of combinations possible when none of the clusters shares

an element or when two cluster share an element but neither of these two shares
an element with the third. These are most easily stabilized by adding enough
degenerate constraints to make a triangulated �gure. The three cases we consider
in more detail are when the three clusters share elements between each other. This
can happen in three di�erent ways, which we call the triangle, chain, and star

connections. These three connections are shown in Figure 19, with the clusters
shaded.

Subcase 4.1 : Triangle
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Figure 18: Two full clusters sharing an element need three degenerate clusters to make the �gure

stable.
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Figure 19: Triangle, chain, and star connections between three full clusters

The triangle initial con�guration has six distinct vertices, and can be stabi-
lized by adding three degenerate clusters. Constraints are added pairwise between
p3, p4, and p6. This makes an octahedral �gure.

Subcase 4.2 : Star
The star in Figure 19 will be stable if the following six degenerate clusters

exist: (p3; p4), (p5; p6), (p2; p7), (p2; p4), (p4; p6), and (p2; p6). The con�guration can
then be built by �rst placing one of the original clusters, say cluster (p1; p6; p7).
Then point p2 can be placed using information from the full cluster (p1; p2; p3) and
the two degenerate clusters (p2; p7) and (p2; p6). Point p4 can be placed in a similar
fashion. The remaining points p3 and p5 can now be �xed using the relationships
between them and the �ve �xed points. The resulting �gure is a decahedron.

Subcase 4.3 : Chain
The chain con�guration can be stabilized by repeated application of Case

3.1 above, requiring six degenerate clusters and resulting in a decahedron. In this
case, the three clusters are not inter-related in the way that the triangle and the
star are, where each cluster shares an element with both of the other two clusters.
Because of the sequential nature of the connection between the clusters, it is not
obvious that there is a collection of degenerate clusters which would stabilize the
chain without having Case 3.1 as a component of a sequential solution.

Case 5 : 4 full clusters
With four full clusters, it is possible to have elements shared between the

clusters so that no degenerate clusters are necessary. This is the case if three cluster
meet in the triangular con�guration, and the fourth cluster shares one vertex with
each of the �rst three. This is similar to the solution of the case 4.1, except that
a full cluster exists to join the �rst three clusters together, instead of degenerate
clusters.

Table 1 summarizes these results, with the subcases for the cases of two and
three full clusters denoted by subscripts.
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Figure 20: The constraint graph for six points in four clusters.

4.5. Examples

As an example of three-dimensional constraint solving, we consider the case
in Table 1 above of four clusters each with exactly three elements. Each element
in a given cluster is shared with exactly one of the other three clusters, thus there
are six geometric elements to be placed. Note that a solution to this problem also
entails a solution to Problems 22 and 31 of the table. The �rst example discusses a
solution from robotics for the case when all six geometric elements are points. The
second example demonstrates a solution for the placement when �ve elements are
points and the sixth is a plane.

Example 1: Six points in four clusters
The four clusters for the problem of six points as the geometric entities

are (p1; p2; p3), (p1; p4; p5), (p2; p4; p6), and (p3; p5; p6). Note that this arrangement
satis�es the criterion that each element of a given cluster is in exactly one of the
other three clusters. The constraints are the distances between each pair of points
in a cluster. A graphical representation of these clusters is shown in Figure 20, with
the clusters distinguished by the type of line of the constraint edges. Each edge in

Table 1: Degenerate and complete cluster combinations necessary for merging of clusters

Complete Degenerate Con�guration

0 6 Tetrahedron
1 3 Tetrahedron
21 3 Double Tetrahedron
22 6 Octahedron
31 3 Octahedron
32 6 Decahedron
4 0 Octahedron



the graph represents a distance constraint.
Physically, the problem is that of positioning the vertices of an octahedron,

given the lengths of the edges of the octahedron. This problem has been extensively
explored in robotics as a special case of the Stewart platform problem. A Stewart
platform has two platforms, not necessarily planar, connected by six legs of variable
length. The problem consists of �nding the coordinates of vertices of the upper
platform relative to the lower platform based solely on the lengths of the legs. If
the two platforms are triangles, as shown in Figure 21, the solution to the Stewart
platform problem is a solution to the six point constraint problem, since the lengths
of the platforms' edges are also given. The four original clusters are the lower plate
and the three triangles with a single vertex on the lower platform and an edge on
the upper platform.

A solution to this problem is given by Nanua, et. al.8, where it is shown that
there are at most 16 possible con�gurations, including complex solutions.
Example 2: Five points and one plane in four clusters

The four clusters have the same topological structure as in the previous
example, except that in this case one of the points is replaced with a plane, e.g.
(p1; p2; P3), (p1; p4; p5), (p2; p4; p6), and (P3; p5; p6). Since there is only one plane, the
only constraints are again distances between each pair of elements in a cluster. A
diagram of this situation is shown in Figure 22. The open circles in P3 represent
the points in P3 which satisfy the distance constraints between P3 and the points
p2, p5, and p6. Again, the elements of each cluster are connected by the same type
of line.

Suppose that the distance between any two geometric elements gi and gj,
where g is a point or a plane, is given by dij. If we assume the distances between
a point and the plane are signed, then we can modify the problem so that the
point p1 lies in the plane P3. If we can �nd a con�guration where p1 lies in P3

and the respective distances between each of the three points p2, p5, and p6 and
P3 are reduced by the given distance from p1 to P3, d13 , the actual con�guration
which satis�es the given constraints can be found by o�setting P3 in the found
con�guration by d13.

p
6l1

p
4

p
5

p
3

l3

l2
l4

l5 l6

p
2

p
1

Figure 21: A Stewart platform with triangular platforms



We �rst position p1 at the origin, make P3 coincide with the xy-plane, and
place p2 so that it lies at (l1; 0; d23), where l21 + d223 = d212. The distance constraints
between p1 and p4 and between p2 and p4 force p4 to lie on a circle C4 whose center is
on p1p2. The circle lies in a plane whose normal is in the direction of p1p2. Suppose
for a moment that p2 also lies in P3. Because the lengths of the edges of the triangle
p1p2p4 are all given, the center p̂4 = (h1; 0; 0) of C4 can be easily computed, as can
the radius r4. The circle C4 can then be written (h1; r4 cosu; r4 sinu). However,
since p2 actually may not lie in the plane, this circle must be rotated about the
y-axis by �, the angle p1p2 makes with P3. Thus the circle C4 on which p4 must lie
is given by

C4 : (cos � h1 + sin � r4 sinu; r4 cos u; � sin � h1 + cos � r4 sin u)

Now, p5 lies in a plane parallel to P3 and also on a sphere of radius d15 centered at
p1. Thus it must lie on the circle C5 given by

C5 : (r5 cos v; r5 sin v; d35)

Similarly p6 lies in a plane parallel to P3 and also on a sphere of radius d26 centered
at p2. Since the distance from p1 to the projection of p2 into P3 is l1 (from the
earlier positioning of p2), p6 must lie on the circle C6 given by

C6 : (l1 + r6 cosw; r6 sinw; d36)

The parameters h1, r4, l1, cos �, sin �, r5, and r6 are all dependent only on the
distances given between elements of the clusters. Speci�cally, we have the following:

h1 =
d2
24
� d2

14
� d2

12

�2d12

r4 =
q
d214 � h21

l1 =
q
d212 � d223

p
2

P
3

p
5

p
4

p
6

p
1

Figure 22: Five points and one plane with distance constraints.



cos � =
l1
d12

sin � =
d23
d12

r5 =
q
d215 � d235

r6 =
q
d226 � (d36 � d23)2

We must now �nd all possible positions of the triangle p4p5p6 such that the
vertices lie on C4, C5, and C6, respectively. That is, we need to �nd values of u, v,
and w which satisfy the three equations

(ch1 + sr4 sinu� r5 cos v)
2 + (r4 cos u� r5 sin v)

2 +

(�sh1 + cr4 sinu� d35)
2 = d245 (1)

(ch1 + sr4 sinu� l1 � r6 cosw)
2 + (r4 cosu� r6 sinw)

2 +

(�sh1 + cr4 sinu� d36)
2 = d246 (2)

(r5 cos v � r6 cosw � l1)
2 + (r5 sin v � r6 sinw)

2 +

(d35 � d36)
2 = d256 (3)

where c = cos � and s = sin �. To solve these three equations, we follow the technique
used in8, in which three equations similar to these are solved to determine solutions
for the six point problem.

Making the standard substitutions cosu =
1�q2

4

1+q2
4

sinu = 2 q4
1+q2

4

, cos v =
1�q2

5

1+q2
5

sin v = 2 q5
1+q2

5

, cosw =
1�q2

6

1+q2
6

, and sinw = 2 q6
1+q2

6

, we obtain three equations with the

following structure:

(A1 q
2

5 +A2 q5 +A3) q
2

4 + (A4 q
2

5 +A6) q4 + (A7 q
2

5 +A8 q5 +A9) = 0 (4)

(B1 q
2

6 +B2 q6 +B3) q
2

4 + (B4 q
2

6 +B6) q4 + (B7 q
2

6 +B8 q6 +B9) = 0 (5)

(D1 q
2

5 +D3) q
2

6 +D5 q5 q6 + (D7 q
2

5 +D9) = 0 (6)

Here the coe�cients Ai, Bj, and Dk are functions only of the constants c, s, l1, h1,
d35, d36, d45, d46, d56, r4, and r5.

We can eliminate q4 from the �rst two equations using Bezout's method9.
This yields an equation of the form

E1 q
4
6 + E2 q

3
6 + E3 q

2
6 + E4 q6 + E5 = 0

where each Ei is polynomial of degree four in q5. The coe�cients of these polyno-
mials again are functions only of the constants of the problem. If we now rewrite
Eq. (6) as

G1q
2

6 +G2q6 +G3 = 0



we can again apply Bezout's method, obtaining the single equation

0 = �E2

4G
3

1G3 � E1G
4

2E5 �E2

3G
2

1G
2

3 �E2

2G1G
3

3 � E2

1G
4

3 �G4

1E
2

5 + E2G1G
2

3E3G2+

2E2G
2

1G
2

3E4 �E2G1G3E4G
2

2 � 3E2G
2

1E5G2G3 + E2G1E5G
3

2 � E1G
2

2G
2

3E3 +

E1G2G
3

3E2 � 3E1G2G
2

3E4G1 + E1G
3

2G3E4 + 4E1G
2

2G1E5G3 + 2E3G1G
3

3E1 +

E3G
2

1G2E4G3 � E3G
2

1E5G
2

2 + 2E3G
3

1G3E5 � 2E1G
2

3G
2

1E5 + E4G
3

1E5G2

Some of the terms in this equation are of degree 16 in q5, since each Ei is
degree four and G1 and G3 are degree two. Thus this polynomial has 16 roots.
Furthermore, when the polynomial is expanded in terms of the dij, the odd-power
terms vanish, so that a polynomial in q25 of degree eight results. The positive roots of
this polynomial yield the potential solutions to the problem, since we are interested
only in con�gurations in real space. The values of q5 can then be back-substituted
into the formulas for cos v and sin v, and the positions of point p5 can be found
directly from these values.

For each set of values fcos v; sinvg, the corresponding values of of cos u, sinu,
cosw, and sinw must be computed. Substitution of cos v and sin v into Eq. (1) and
Eq. (3) yields two equations, which can be written in the form

Li cos�i +Mi sin�i +Ni = 0

where �1 = u and �2 = w. These can be solved as

cos�i =
�LiNi + �Mi(L2

i +M2
i �N2

i )
1=2

L2
i +M2

i

sin�i =
�MiNi � �Li(L2

i +M2
i �N2

i )
1=2

L2
i +M2

i

where � = �1. Of the four possible combinations of solutions, only one will satisfy
the remaining equation, Equation (2). These values can then be substituted into
the equations of the circles C4 and C6 to determine the corresponding points p4 and
p6.

A Numerical Example

To verify the above process, we consider a numerical example with one pre-
determined solution1 The initial con�guration is

p1 = (0; 0; 0)

p2 = (3; 0; 4)

P3 = xy�plane

p4 = (3; 4; 0)

p5 = (2; 2; 2)

p6 = (6; 1; 1)

1This example, as well as the general solution above, was computed using Maple.



This means the input to the problem is four clusters with the following distance
constraints:

Cluster 1 Cluster 2 Cluster 3 Cluster 4

d(p1; P3) = 0 d(p1; p4) = 5 d(p2; p4) = 4
p
2 d(p5; p6) = 3

p
2

d(p2; P3) = 4 d(p1; p5) = 2
p
3 d(p4; p6) =

p
19 d(P3; p5) = 2

d(p1; p2) = 5 d(p4; p5) = 3 d(p2; p6) =
p
19 d(P3; p6) = 1

From these distances the parameters of the three equations are computed:

h1 =
9

5

r4 =
4

5

p
34

cos � =
3

5

sin � =
4

5
l1 = 3

r5 = 2
p
2

r6 =
p
10

With these values, Eqs. (1), (2), and (3) become

�
27=25 + (16

p
34 sin u)=25� 2

p
2 cos v

�2
+
�
(4
p
34 cosu)=5 � 2

p
2 sin v

�2
+

�
�36=25 + (12

p
34 sin u)=25� d35

�2
= d245

�
�48=25 + (16

p
34 sinu)=25 �

p
10 cosw

�2
+
�
(4
p
34 cos u)=5�

p
10 sinw

�2
+

�
�36=25 + (12

p
34 sin u)=25 � d36

�2
= d246

�
2
p
2 cos v �

p
10 cosw � 3

�2
+
�
2
p
2 sin v �

p
10 sinw

�2
+

(d35 � d36)
2 = d256

Following the solution procedure detailed above, we found six solutions for
q25, two of which were positive. The corresponding values of q5, cos v, sin v, cosu,
sinu, cosw, and sinw are shown in Table , rounded to six digits. The equations for
the circles C4, C5, and C6 were evaluated at these four solutions, with the following
results:



Table 2: Real solutions to the numerical example

q5 cos v sin v cos u sinu cosw sinw

0.266489 0.867385 0.497638 -0.0735262 0.997293 -0.631411 -0.775448

-0.266489 0.867385 -0.497638 0.0735262 0.997293 -0.631411 0.775448

0.414214 0.707107 0.707107 0.857493 0.514496 0.948683 0.316228

-0.414214 0.707107 -0.707107 -0.857493 0.514496 0.948683 -0.316228

Solution 1

p4 = (4:801708264;�0:3429823033; 1:351281198)

p5 = (2:453334509; 1:407533228; 2:0)

p6 = (1:003302954;�2:452182886; 1:0)

Solution 2

p4 = (4:801708264; 0:3429823033; 1:351281198)

p5 = (2:453334509;�1:407533228; 2:0)

p6 = (1:003302954; 2:452182886; 1:0)

Solution 3

p4 = (3:000000039; 3:999999971; 0:000000029)

p5 = (2:000000071; 1:999999927; 2:0)

p6 = (6:000000050; 0:9999998449; 1:0)

Solution 4

p4 = (3:000000039;�3:999999971; 0:000000029)

p5 = (2:000000071;�1:999999927; 2:0)

p6 = (6:000000050;�0:9999998449; 1:0)

Solution 3 is the predetermined solution, which corroborates the correctness
of the solution procedure. Note that Solution 1 and Solution 2 are mirror-images
of each other through the yz-plane, as are Solution 3 and Solution 4.
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